The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 0 X 0 0 0 1 0 X 0 X+2 0 X+2 0 X 0 X+2 X 0 X+2 0 2 X 0 2 X+2 X+2 2 X+2 2 X+2 0 X+2 2 X 0 X+2 2 X X+2 X X+2 X 0 X+2 0 X+2 0 X+2 2 X 0 X 2 X+2 X+2 2 X 2 2 X+2 2 X+2 X X+2 0 0 X+2 X 2 0 0 0 0 2 X+2 X 2 0 2 0 0 X+2 2 X X+2 X X X X 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2 0 2 0 2 2 2 2 2 0 2 2 2 2 0 2 2 2 2 2 0 2 0 2 2 2 2 2 0 0 2 2 2 2 2 0 0 0 2 0 2 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0 2 2 0 2 0 2 2 2 0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 2 0 2 0 0 2 0 0 2 2 0 2 0 2 0 0 2 2 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 2 0 0 0 0 2 0 2 0 2 2 2 2 2 0 2 2 0 2 2 2 2 2 0 2 2 2 0 2 2 2 2 2 2 0 2 0 2 2 2 2 2 0 2 0 0 2 0 0 2 2 2 0 0 0 2 0 0 2 2 0 0 0 0 0 2 0 2 2 0 2 2 0 2 0 2 2 0 2 0 0 2 0 0 2 2 2 2 2 0 2 0 2 2 0 0 0 0 2 0 2 2 0 2 0 2 0 2 2 2 2 0 0 0 2 0 0 0 2 0 0 0 0 2 0 2 2 0 2 2 2 0 0 2 0 2 0 2 0 0 2 0 2 0 0 0 0 0 0 2 0 2 2 2 0 2 0 0 2 2 2 0 0 2 2 2 2 0 0 2 2 2 0 0 2 0 2 2 0 0 0 0 0 2 2 2 0 0 2 0 0 0 0 0 2 0 2 2 2 0 2 0 2 0 2 2 2 2 0 0 2 0 0 0 2 2 2 2 2 2 0 0 2 0 2 0 generates a code of length 83 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 77. Homogenous weight enumerator: w(x)=1x^0+72x^77+50x^78+68x^79+92x^80+84x^81+117x^82+76x^83+122x^84+108x^85+84x^86+44x^87+32x^88+28x^89+2x^90+4x^91+6x^92+28x^93+2x^94+2x^96+1x^98+1x^144 The gray image is a code over GF(2) with n=332, k=10 and d=154. This code was found by Heurico 1.16 in 96 seconds.